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I. Chiral Symmetry Breaking in One Flavor
QCD

Chiral Condensate

Dirac Spectrum of One-Flavor QCD

Sign Problem
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One Flavor QCD

� Chiral symmetry is broken by the anomaly.

� There is no spontaneous symmetry breaking and no Goldstone
bosons.

� The mass dependence of the one flavor QCD partition function is
given by

Z = emV Σ cos θ+O(m2V ).

� For Nf = 2 with spontaneous symmetry breaking, the mean field
estimate of the partition function is given by (for θ = 0 )

Z = e|m|V Σ+O(m2V ).
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Chiral Condensate
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Behavior of the chiral condensate for Nf = 1 (left) and Nf ≥ 2 (right).

Σ(m) = −〈q̄q〉 =
d

dm
log Z(m)

The goal of this talk is to explain this behavior in terms of the Dirac
spectrum.
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Dirac Spectrum

The spectral density of the Dirac operator is given by

ρ(x, m, θ) =

∑

ν eiνθZν(m)ρν(x, m)
∑

ν eiνθZν(m)
.

The partition function at fixed topology is given by

Zν(m) = mν〈
∏

k

(λ2
k + m2)〉.

For m < 0 the partition function is not positive definite and
ρ(x, m < 0, θ) may become negative.
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Banks-Casher

− 〈q̄q〉 =

〈

1

V

∑

k

1

iλk + m

〉

=

〈

1

V

∑

k

m − iλk

λ2
k + m2

〉

=

〈
1

V

∫

dλρ(λ, m)
m

λ2 + m2

〉

=
m→0

π

V
ρ(0, m)sign(m)

To obtain a continuous chiral condensate we need that
ρ(0, m = 0+) = −ρ(0, m = 0−) .
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Could it be that ρ(0) = 0?

We can also interpret the Banks-Casher relation as

ρ(m = 0, λ = 0) =
V

π
(〈q̄q〉m=0

−

− 〈q̄q〉m=0+
).

We could conclude that because of the absence of a discontinuity in
the chiral condensate we have ρ(0) = 0 . Creutz-2006

We will see that the solution to this puzzle is much more subtle than
this.
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Lattice Results for the Schwinger Model

Distribution of the lowest eigenvalue of the Dirac operator of the Schwinger

model compared to chiral random matrix theory (solid curve).
Damgaard-Heller-Narayanan-Svetitsky-2005
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Lattice results for one-flavor QCD
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Distribution of the lowest two Dirac eigenvalues for QCD with one flavor

compared to the result from chiral random matrix theory (solid curve).

Degrand-Hoffmann-Schäfer-Liu-2006
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What Can We Learn from Lattice Dirac
Spectra?

� The smallest Dirac eigenvalues of one-flavor QCD behave in
exactly the same was as the Dirac spectrum of QCD and QCD-like
theories with spontaneously broken chiral symmetry.

� The Dirac spectrum is determined by the U(2|1) -theory which has
Goldstone particles as well as a massive η′ .

� Although the Dirac spectrum at fixed topology has all signatures of
spontaneous chiral symmetry breaking, it should synthesize a
chiral condensate that is due to explicit chiral symmetry breaking.
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The Microscopic Domain of QCD

We will do our calculations in the microscopic domain of QCD, and the
explicit results we quoted before were already in this domain.

In this domain, also know as the ǫ -domain, the quark mass and the
Dirac eigenvalues scale as

m ∼ 1

V
, λ ∼ 1

V
.

Correction terms will enter when m, λ ≈ 1/ΛQCD

√
V .

In this domain, the spectral density can be evaluated analytically.
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Spectral Density at Fixed ν for Nf = 1

The one-flavor spectral density in the ǫ -domain is given by

ρν(λ, m) =
x̂

2
(J2

ν (x̂) − Jν+1(x̂)Jν−1(x̂)) + |ν|δ(x̂)

− x̂

m̂2 + x̂2

[

x̂Jν(x̂)Jν+1(x̂) − m̂
Iν+1(m̂)

Iν(m̂)
J2

ν (x̂)

]

.

Damgaard-Osborn-Toublan-JV-1999

x̂ ≡ λΣV, m̂ ≡ mΣV
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Microscopic Spectral Density at fixed ν

5 xV
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Ρ
Ν
HxL

The one microscopic spectral density for ν = 2 and mV = 1 (red)
compared to the quenched result for ν = 2 (blue).
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II. Role of Topology

Decomposition in Topological Sectors

Is the Chiral Condensate Due to Zero Modes

Chiral Condensate at θ = 0

Sign Problem
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Topological Decomposition

Z(m, θ) = emV Σ cos θ =
∑

ν

eiνθZν(m).

The partition function at fixed ν is given by

Zν(m) =
1

2π

∫ π

−π

dθemV Σ cos θ = Iν(mV Σ).

Asymptotic behavior of Bessel functions

Iν(m̂) ∼







1√
2πm̂

e|m̂|−ν2/2|m̂|, m̂ > 0,
(−1)ν√
2π|m̂|

e|m̂|−ν2/2|m̂|, m̂ < 0
.

Notice that there are exponential cancellations to recover the partition
function at θ = 0 for m < 0 .

The topological susceptibility is equal to χ = mV Σ .
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Can the Chiral Condensate be Due to the Zero
Modes?

If we take the chiral limit before the thermodynamic limit then

− 〈q̄q〉 =
1

V Z(m)

〈
∑

ν

∑

k

1

iλk + m
m|ν|

∏

k

(iλk + m)

〉

=
m→0

1

V

〈
∏

λk 6=0 iλk

∣
∣
∣
ν=1

〉

〈
∏

λk 6=0 iλk

∣
∣
∣
ν=0

〉 +
1

V

〈
∏

λk 6=0 iλk

∣
∣
∣
ν=−1

〉

〈
∏

λk 6=0 iλk

∣
∣
∣
ν=0

〉 ≈ 1

V ∆λ0
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The nonzero eigenvalues shift on average by ν∆λ/2 .

Even in the chiral limit, the value of the chiral condensate is due to the
nonzero modes.
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Condensate Due to the Anomaly in the Gapped
Phase

At high temperature the gap in the Dirac spectrum, ∆λ0 remains finite
in the thermodynamical limit.

If the UA(1) symmetry remains broken, the condensate in the chiral
limit is given by

Σ ∼ 1

V ∆λ0

and the condensate is at least 1/V supppressed and vanishes in the
thermodynamical limit.
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What Happens if we Reverse the
Thermodynamics and Chiral Limits?

If the thermodynamic limit is taken before the chiral limit we have that
mV Σ ≫ 1

− 〈q̄q〉 =
1

V

∑

ν
|ν|
m e−ν2/2|m|V Σ

∫
dνe−ν2/2|m|V Σ

=
1

V m

∑

ν |ν|e−ν2/2|m|V Σ

∫
dνe−ν2/2|m|V Σ

= sign(m)
2Σ

√

π2|m|V Σ
.

To get a constant chiral condensate we need the contribution of the
nonzero modes.

This analysis is incorrect for m < 0 because of the exponential
cancellations.
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Chiral condensate at θ = 0

Σ(m, θ = 0) =

∑∞
ν=−∞ Zν(m)Σν(m)
∑∞

ν=−∞ Zν(m)
.

This condensate follows from the spectral density at θ = 0

ρ(λ, m, θ = 0) =

∑∞
ν=−∞ Zν(m)ρν(λ, m)

∑∞
ν=−∞ Zν(m)

.

Can be evaluated numerically in the ǫ -domain of QCD.

Damgaard-1999, Kanazawa-Wettig-2011
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Chiral Condensate for Nf = 1
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Mass dependence of the chiral condensate due to the nonzero modes for

ν = 2 (left) and the mass dependence of the chiral condensate at θ = 0 . Note

that Σν
NZ(m) = Σν(m) − |ν|

mV
.

For m < 0 , the negative values of Σν(m) should average to a positive
number. This is possible because the weight Zν(m) is not positive
definite.
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Sign Problem for QCD with Nf = 1

Because

det(D + m) = mν
∏

k

(λ2
k + m2).

QCD at θ = 0 has a severe sign problem for m < 0 .
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Magnitude of the Sign Problem for QCD with
Nf = 1

Partition function at θ = 0

ZQCD(m) =

∞∑

ν=−∞
Iν(mV Σ) = emV Σ.

Phase quenched partition function

Z|QCD|(m) =
∞∑

ν=−∞
|Iν(mV Σ)| = e|m|V Σ.

Average sign

cos θ =
ZQCD(m)

Z|QCD|(m)
= e(m−|m|)V Σ.
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Sign Problem for QCD with Nf = 1

-3 -2 -1 0 1 2 3
mV

0.2

0.4

0.6

0.8

1.0
cosHΘL

cos θ =
ZQCD(m)

Z|QCD|(m)
.
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Silver Blaze Problem

� The spectrum of the Dirac operator for one flavor QCD at fixed
topological charge is as if chiral symmetry is broken
spontaneously.

� In particular, in the thermodynamic limit, the chiral condensate has
a discontinuity when the mass crosses the line of eigenvalues.

� General arguments show that the chiral condensate for θ = 0

does not have a discontinuity.

� What is the solution of the “Silver Blaze Problem”?

� One flavor QCD has a sign problem for m < 0 .

� This problem first arose in QCD at nonzero chemical potential, and
the original motivation to study one flavor QCD was to improve our
understanding of the relation between the chiral condensate and
the Dirac spectrum for QCD at nonzero chemical potential.
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III. One dimensional QCD at Nonzero
Chemical Potential

Chiral Condensate

Sign Problem

Spectral Density

OSV Mechanism
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Chiral Condensate U(1) QCD in 1d
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Dirac spectrum of 1d QCD

sinh
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µ/µ

c

0

0.5

1

<
eiθ

> pq

n=4
n=10
n=16

µ
c
=1Σ(m) =

D

P

k

1
λk+m

Q

k
(λk+m)

E

D∏

k(λk + m)
E

determinant with
a complex phase

Ravagli-JV-2007, Aarts-Splittorff-2010
Eigenvalues are equally spaced on an ellipse with a random overall
phase.

The dependence of the partition function on the chemical potential can
be eliminated by shifting the integration variable θk → θk + iµ .
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Chiral Condensate for U(1) QCD in 1d
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The chiral condensate is continuous across the ellipse where the
eigenvalues are located.

In the limit of a dense spectrum, Σ(m) is discontinuous across the
imaginary axis despite the fact that there are no eigenvalues for µ 6= 0 .

Since we have a U(1) theory there are no baryons and the partition
function is independent of µ
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Spectral Density for 1d QCD

For large V and small µ the eigenvalues of the Dirac operator are
located on two parallel lines x ± µ resulting in the spectral density and
the chiral condensate

Σ(m) =

∫
dxdy

2π

1

m − x − iy
δ(|x| − µ)

[

1 − (eV (x+iy) + e−V (x+iy))

eV m + e−V m

]

︸ ︷︷ ︸

= tanh(V m). ρ(x, y) for Nf = 1

In the thermodynamic limit (V → ∞) this results in a discontinuity
across m = 0 , but not at m ± µ .

Osborn-Splittorff-JV-2005, Ravagli-JV-2008
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Chiral Condensate in 1d

The first term ( ∼ δ(|x| − µ) ) gives the quenched contribution

Σquenched(m) = sign(m − µ) + sign(−m + µ).

This follows from electrostatic arguments with eigenvalues as charges.
The second term is evaluated as

Σosc(m) = tanh(mV ) − sign(m − µ) − sign(−m + µ).

‘
tanh(mV)

−µ µ

Σ

m m

Σ

−µ µ
quen (m)  osc(m) The chiral condensate

becomes discontinuous
in the continuum limit.

Ravagli-JV-2007
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Alternative to the Banks-Casher Formula

� This mechanism makes it possible to obtain a chiral condensate
that does not change when the mass crosses a line or area of
eigenvalues.

� For a positive definite eigenvalue density this is not possible
according to the Banks-Casher formula.

� When the eigenvalue density is not positive definite (due to the
fermion determinant), the OSV mechanism replaces the
Banks-Casher formula.

� This mechanism, where the chiral condensate results from an
oscillating spectral density with an amplitude that diverges
exponentially with the volume and a period proportional to the
inverse volume, was discovered for a chiral random matrix theory
at nonzero chemical potential. Osborn-Splittorff-JV-2005

Let us see how it can work for QCD with one flavor.
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IV. Role of Dynamical Quarks

Decomposition into Quenched and Dynamical Part

How To Obtain a Constant Chiral Condensate
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Decomposition of the Spectral Density

� To confirm if the OSV mechanism holds we have to calculate the
spectral density of the Dirac operator for Nf = 1 QCD.

� Actually this can be done analytically in the ǫ domain of QCD. The
result can be expressed as a simple one dimensional integral.

We decompose

ρ(λ, m) =







ρzm(λ, m) + ρnz(λ, m) ,

ρsq(λ, m) + ρosc(λ, m) + ρ δ zm(λ, m) ,

where

ρsq(λ, m) = ρ(λ, |m|) ,

ρosc(λ, m) = ρnz(λ, m) − ρnz(λ, |m|) ,

ρ δ zm(λ, m) = ρzm(λ, m) − ρzm(λ, |m|) .
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How to get a Constant Chiral Condensate?

-3 -1 1 3
m

-1

1

SsqHmL

Behavior of the chiral condensate

due to a line of eigenvalues for the

quenched theory at θ = 0 .

-30 30 m

-1

1

S
Θ=0

Behavior of the chiral condensate due

to a line of eigenvalues for the one flavor

theory at θ = 0 .

This implies that the not positive definite measure should give a
correction to the spectral density that results in a mass dependence of
the chiral condensate given by Σosc(m) + Σδzm = 2θ(−m)
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OSV Mechanism in Pictures
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m
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How can this be Generated by a Spectral
Density?

-3 -1 1 3
m

-1

1

SoscHmL+S∆zmHmL

2θ(−m) =

∫

dλ
ρosc(λ, m)

iλ − m
.

What is ρosc(λ, m) ?

Hint,
θ(m) =

1

2πi

∫ ∞

−∞
dτ

eimτ+mǫ

τ − iǫ
.
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Solution satisfying ρ(λ) = ρ(−λ)

ρosc(λ, m) =
1

π
(eiV λ−V m + e−iV λ−V m)

∫ ∞

−∞
dλ

1

iλ − m

1

π
(eV (iλ−m) + eV (iλ−m)) = 2θ(−m) − 2θ(m)e−2V m

satisfying ρ(λ) = ρ(−λ) is given by Therefore, the chiral condensate
due to the spectral density

ρ(λ, m) =
1

π
(1 − eV (iλ−m) − e−V (iλ+m).

does not have a discontinuity across m = 0 .
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What is the Most General Class of solutions?

At least in the thermodynamical limit, the solution for the spectral
density is not unique. Another solution that gives 2θ(−m) in the
thermodynamic limit is given by

ρ(x, m) = − 4

π

x2

x2 + m2

∫ 1

0

tdt√
1 − t2

e−2mV t2J1(2xV t)

However, we have the stronger requirement that also in the
microscopic domain the contribution to the condensate is given by
2θ(−m) .
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V. One Flavor QCD

Spectral Density

Zero Modes

Solution of Silver Blaze Problem
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Technical Detail

We have to calculate

ρ(x̂, m̂, θ = 0) =
1

Z(m̂, θ = 0)

∑

ν

Iν(m̂)ρν(x̂, m̂),

where

ρν(x̂, m̂) =
x̂

2
(J2

ν (x̂) − Jν+1(x̂)Jν−1(x̂)) + |ν|δ(x̂)

+ − x̂

m̂2 + x̂2

[

x̂Jν(x̂)Jν+1(x̂) − m̂
Iν+1(m̂)

Iν(m̂)
J2

ν (x̂)

]

,

and

Z(m̂, θ = 0) = em̂.
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Technical Detail

To evaluate the microscopic spectral density at fixed θ -angle we need
sums of the form

Sa,b,c(x, m, θ) =
∞∑

ν=−∞
eiνθIν+a(m)Jν+b(x)Jν+c(x)

They can be reduced to one-dimensional integrals. Examples are

∑

ν

Iν(m)J2
ν (x) =

2

π

∫ 1

0

dt√
1 − t2

em−2mt2J0(2xt) ,

∑

ν

Iν(m)Jν+1(x)Jν−1(x) = − 2

π

∫ 1

0

dt√
1 − t2

em−2mt2J2(2xt) .

JV-Wettig-2014
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The Dirac Spectrum for Nf = 1 at θ = 0
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The sign quenched part of the spec-

tral density at θ = 0 , ρ̂sq(x̂, m̂) .
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0
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m̂

ρ̂osc(x̂, m̂)

The oscillating part of the spectral

density at θ = 0 , ρ̂osc(x̂, m̂) .

ρ̂nz(x, m) =
1

π

Z

1

0

e−2mV t
2
dt

t
√

1 − t2
J1(2xV t) − 2

π

x

x2 + m2

Z

1

0

e−2mV t
2
dt√

1 − t2

×
ˆ

xtJ1(2xV t) + m(1 − 2t
2
)J0(2xV t)

˜

.
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Asymptotic Scaling for m > 0

10 x`

0.25

ΡsqHx
` m` ,m` L

Spectral density for mV Σ ≫ 1 .

ρsq(x
√

m, m > 0) ∼ xV√
2πmV

e−V x2/4m[I0(V x2/4m) + I1(V x2/4m)]

Wettig-JV-2014Dirac Spectra – p. 45/54



Asymptotic Scaling for m < 0

50 x`

-0.1

0.1

ΡoscHx
` ,m` Le-2 m` m

`

Spectral density for mV Σ ≪ −1 .

ρosc(x, m < 0) ∼ e2|m|V
√

8π|m|V
J1(2xV ).

Wettig-JV-2014
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Spectral Density due to Zero Modes

Contribution from zero modes Leutwyler-Smilga-1992

ρzm(x, m) = e−mV
∑

ν

|ν|Iν(mV )δ(x) = e−mV (I0(mV ) + I1(mV ))δ(x).

Spectral density becomes exponentially large for m < 0 .
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Chiral Condensate

The chiral condensate can be obtained by integration over the spectral
density

Σ(m) =
1

V

∫ ∞

−∞

2mρ(λ, m)

λ2 + m2
.
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Role of the Zero Modes

For m < 0 the contribution from the zero modes diverges in the
thermodynamic limit as

Σδzm(m) ∼
V →∞
m<0

e2|mV |
√

8π|mV |3
.

This contribution cancels against a similar contribution from the
nonzero modes. Kanazawa-Wettig-2012

Indeed we do find the asymptotic behavior JV-Wettig-2014

Σosc(m) ∼
V →∞
m<0

− e2|mV |
√

8π|mV |3
.
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Cancellation to All Orders

Actually, this cancellation takes place to all orders in 1/mV Σ .

Using the exact analytical expressions, we have shown the identity

Σosc(m) + Σδzm(m) = 2θ(−m̂).

JV-Wettig-2014

This is valid for mΛQCD ≪ 1/
√

V
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Total Contribution due to the Sign of the Mass

−2 2

−1

1

Σδzm(m̂)

Σosc(m̂)

Σosc(m̂)+Σδzm(m̂)

m̂

Σ(m̂,θ = 0)
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Solution of the Silver Blaze Problem

-3 -1 1 3
m

-1

1

SsqHmL

-3 -1 1 3
m

-1

1

SoscHmL+S∆zmHmL

-3 -1 1 3
m

-1

1

SsqHmL+SoscHmL+S∆zmHmL
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V. Conclusions

� The chiral condensate in the massless limit of one-flavor QCD is
nonzero because of the zero modes but its value is determined by
the nonzero modes.
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� From QCD at nonzero chemical potential we have learnt that the
solution of the Silver Blaze problem requires an oscillating spectral
density with period ∼ 1/V and an amplitude that grows
exponentially with the volume.
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� The chiral condensate in the massless limit of one-flavor QCD is
nonzero because of the zero modes but its value is determined by
the nonzero modes.

� One flavor QCD has a Silver Blaze problem when the chiral
condensate remains constant while the quark mass crosses a line
of eigenvalues.

� From QCD at nonzero chemical potential we have learnt that the
solution of the Silver Blaze problem requires an oscillating spectral
density with period ∼ 1/V and an amplitude that grows
exponentially with the volume.

� In the ǫ domain of QCD we have obtained simple exact analytical
expressions for the eigenvalue density of the Dirac operator at
θ = 0 and θ = π . Indeed, an oscillating contribution to the spectral
density results in a constant chiral condensate.
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V. Conclusions

� The zero modes are essential for the continuity of the chiral
condensate. Their exponentially increasing contribution is
canceled against the contribution from the nonzero modes.
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V. Conclusions

� The zero modes are essential for the continuity of the chiral
condensate. Their exponentially increasing contribution is
canceled against the contribution from the nonzero modes.

� Rooting fails at a fundamental level.
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